Fish Occupancy & Stream Temperature: Models & metrics for planning and management

NALCC Connecticut River Watershed Pilot Project Aquatics Subgroup June 27, 2014

USGS Conte Anadromous Fish Research Center Dan Hocking, Ben Letcher, Ana Rosner, Kyle O'Neil, Yoichiro Kanno

- Understand fish population response to environmental variation
 - Stream and environmental conditions
 - stream temperature
 - stream flow
 - riparian habitat
 - Stream and environmental conditions are driven by
 - basin characteristics, including land use
 - climate, including air temperature & precipitation

	Predictions	Interpreted metrics
Ecological	Fish occupancy	 Fish occupancy sensitivity to Temperature increase Forest cover decrease/increase
Environmental	Daily stream temperatureMean annual stream flow	 Average maximum temperature Days exceeding 18°C Resistance to air temperature peaks Many other possibilities
	Climate Environment	Fish Fish occupancy

Landuse

Suggested Objectives modeled after EBTJV

EBTJV Conservation Priority Category			
Protect the "best of the best" habitat that supports existing, healthy wild brook trout populations;	All streams		
Focus on critical wild brook trout spawning and early life history habitat in sub-watersheds classified as Intact; Conserve unique wild brook trout life history strategies (i.e. lacustrine populations, large river populations, and coastal populations)	Classify stream reaches by stream size, to distinguish <i>stream-resident</i> and <i>fluvial populations</i>	Rank Locations (within each category)	Set Objectives (within each category)
Preserve genetic diversity and strains of wild brook trout populations	Classify stream reaches by air temperature, to ensure inclusion of populations with genetic <i>adaptations to warming</i>		

Other Conservation Priority			
Protect habitat where brook trout are expected to persist under climate warming	Identify stream reaches that are more resistant to high peaks in air temperature	Rank Locations	Set Objectives

Brook trout

- Brook trout and brown trout: most widely and consistently available field observation data of headwater species
- Brook trout is a native species valued by environmentalists and sportsmen
- Brook trout are a good representative of coldwater species (Note: total number of species in headwater habitats is relatively low)

- All model methods and predictions can be performed for *other species*
- All model methods and predictions can be performed for *communities of species*
- Quality checking and applying metadata standards to produce a consistent, updatable, quality data set has only been performed for brook trout
- Data for other species may be more limited

	Predictions	Interpreted metrics
Ecological	Fish occupancy	 Fish occupancy sensitivity to Temperature increase Forest cover decrease/increase
Environmenta	Daily stream temperatureMean annual stream flow	 Average maximum temperature Days exceeding 18°C Resistance to air temperature peaks Many other possibilities
	Climate	Fich

Occupancy Models for

Understanding Effect of Environmental Drivers

- Probability of fish species presence is determined by the combined effect of multiple environmental drivers (compared with niche envelope)
- Instead of weighting importance of various drivers, occupancy models use empirical observations to estimate the relative effect of environmental conditions
- Requires significant field observation data
- Drivers include
 - Stream flow
 - Stream temperature
 - Forest cover
 - Geology and soils
 - Number of upstream dams
 - Wetlands and open water
- Ties these environmental conditions with *fish sampling field observations*
- Generate predictions under current or altered conditions

	Predictions	Interpreted metrics
Ecological	Fish occupancy	 Fish occupancy sensitivity to Temperature increase Forest cover decrease/increase
Environmental	Daily stream temperatureMean annual stream flow	 Average maximum temperature Days exceeding 18°C Resistance to air temperature peaks Many other possibilities

>50% probability of occupancy "target"

For these stream reaches, how much of an increase in air temperature can be **tolerated** such that the stream still meets the 50% probability of occupancy target?

	Predictions	Interpreted metrics
Ecological	Fish occupancy	 Fish occupancy sensitivity to Temperature increase Forest cover decrease/increase
Environmental	Daily stream temperatureMean annual stream flow	 Average maximum temperature Days exceeding 18°C Resistance to air temperature peaks Many other possibilities

Stream Temperature

10

-5

-10

100

200

300

— Water <mark>— Air</mark>

cience for a changing

2004

17

Stream Temperature

200 Day of year

300

100

– Water – Air

20

10-

0-

-10-

Temperature (°C)

	Predictions	Interpreted metrics
Ecological	Fish occupancy	 Fish occupancy sensitivity to Temperature increase Forest cover decrease/increase
Environmental	Daily stream temperatureMean annual stream flow	 Average maximum temperature Days exceeding 18°C Resistance to air temperature peaks Many other possibilities

Stream temperature interpreted metrics Average Maximum

Stream temperature interpreted metrics Number of days over 18 °C

Obear Brook 2010: 26 days

Streams differ in their resistance to air temperature peaks

Stream temperature interpreted metrics Resistance to peak air temperature

 Water
 Air
 Resistance to air temp peaks

	Predictions	Interpreted metrics
Ecological	Fish occupancy	 Fish occupancy sensitivity to Temperature increase Forest cover decrease/increase
Environmental	Daily stream temperatureMean annual stream flow	 Average maximum temperature Days exceeding 18°C Resistance to air temperature peaks Many other possibilities
	Climate Environment	Fish Fish occupancy

Suggested Objectives modeled after EBTJV

EBTJV Conservation Priorities	Category	Ranking (within each category)	Objective (within each category)
Protect the "best of the best" habitat that supports existing, healthy wild brook trout populations;	All streams		
Focus on critical wild brook trout spawning and early life history habitat in sub-watersheds classified as Intact; Conserve unique wild brook trout life history strategies (i.e. lacustrine populations, large river populations, and coastal populations)	Classify stream reaches by stream size, to distinguish <i>stream-resident</i> and <i>fluvial populations</i>	Identify x km streams w/ highest probability of occupancy or Identify all streams above 80% probability of occupancy or Identify top 10% of streams w/ highest °C of warming tolerated	Set target of x km streams with ≥ 50% probability of occupancy
Preserve genetic diversity and strains of wild brook trout populations	Classify stream reaches by air temperature, to ensure inclusion of populations with genetic <i>adaptations to warming</i>		

Other conservation Priorities			
Protect habitat where brook trout are expected to persist under climate warming	ldentify stream reaches that are more resistant to high peaks in air temperature	Identify x km streams w/ lowest maximum stream temperature or Identify x km of streams w/ fewest days exceeding 18 °C or Identify top 10% of streams with highest resistance to air temperature peaks	Set target of x km streams with maximum stream temperature ≤20°C or Set target of x km protected streams with resistance to air temperature peaks ≥ 300 air- water degree-days

Dan Hocking, Ben Letcher, Ana Rosner, Kyle O'Neil USGS Conte Anadromous Fish Research Center

Yoichiro Kanno, Clemson University

Funding from North Atlantic Landscape Conservation Cooperative

Additional funding and support from

